ANALISIS PENYELESAIAN SOAL PERSAMAAN DIFERENSIAL BIASA: METODE DERET TAYLOR, RUNGE-KUTTA, HEUN, DAN EULER
Kata Kunci:
Persamaan Diferensial, Deret Taylor, Runge-Kutta, Heun, EulerAbstrak
Persamaan diferensial adalah persamaan matematika yang melibatkan fungsi dari satu atau lebih variabel yang menghubungkan nilai fungsi itu sendiri dengan turunannya pada berbagai orde. Penyelesaian persamaan diferensial biasa (PDB) dapat dilakukan dengan dua cara yaitu dengan metode analitik dan metode numerik. Beberapa metode numerik yang digunakan untuk menghitung solusi PDB meliputi metode Deret Taylor, metode Runge-Kutta, metode Heun, dan metode Euler yang dapat ditemukan pada penelitian terdahulu hingga terkini. Penelitian ini dilakukan dengan tujuan untuk mendapatkan gambaran penyelesaian soal dengan berbagai metode dalam pembelajaran persamaan diferensial biasa dan menentukan metode yang paling mudah digunakan sehingga dapat membantu mahasiswa untuk menanamkan konsep materi mata kuliah persamaan diferensial. Berdasarkan analisis yang telah dilakukan, dapat disimpulkan bahwa keempat metode (deret Taylor, Runge-Kutta, Heun dan Euler) yang digunakan dalam menyelesaikan soal persamaan diferensial biasa akan menghasilkan nilai yang sama atau mendekati satu sama lain dan metode deret Taylor merupakan metode yang paling sederhana dan mudah untuk digunakan.